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0. ABSTRACT
) £y

Multidimensional Wilson-Hilfert_\ﬁt.’rZT transformations support Gaussian approxi-
mations to certain joint distributions of quadratic forms in Gaussian variables. Central and

noncentral distributions are studied and applications are noted. Parameters of the approx-

“
2o

imating distributions are given up to terms of order o(v3) n the degrees of freedom v.

Numerical studies validate using these approximation$ over a range of parameters for an
essential subclass of the distributions. )
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1. INTRODUCTION

Developments in statistics and applied probability often entail joint distributions of
definite quadratic forms in Gaussian variables, either in small samples or asymptotically.
Examples include linear statistical models (10]. the ballistics of multiple weapons systems
(4}, signal detection in multichannel receivers {25}, and bone lengths determined in vivo using
X-ray stereography ({26], [28] and [29]). Topics in large-sample theory inciude limiting joint
distributions of likelihood ratios, of Pearson's [27] \? statistics for categorical data |12}, and
of Friedman's [5] y? statistics in two-way data without normality ([13] and |[14]). Further
details are given subsequently, and other examples could be cited.

Distributions of these types include multidimensional chi-squared and Rayleigh dis-
tributions ([8], {9], {10], [18], [19], [20], [22], [24], and [30}), often depending on an excess
of parameters. Series expansions for their distribution functions typically are intractable in
dimensions greater than two: convergence properties of these series may not be known {19];
and series known to converge may do so slowly. Viable approximations to these distrib-
utions are clearly needed. Among altematives, multivariatc Edgeworth expansions (3] are
often flawed by inadequacy of the leading term and failure of the sum of the first few terms
10 be positive. Approximations from the Pearson system. in wide use in the univanate




case, hold scant promise since little is known beyond the bivanate case (18], pp. 6-9).
Alternatively, the normalizing transformations of Wilson and Hilferty [32] appear promuis-
ing, as these give remarkable accuracy for a single quadratic form over a wide range of pa-
rameters ([16], {17] and {23]).

Here we develop muitivariate transformations leading to Gaussian approximations
not depending on excessive parameters, requiring only moments of first and second orders.
To be precise, let [Q,, ..., 0] be standardized quadratic forms in Gaussian vaniables having
v degrees of freedom whose limit as v — oo is jointly Gaussian. Lemma 1 assures that
[0}, ..., Q] also has a Gaussian limit for every {«, € (0,1]; 1</ <r}. Extending devel-
opments in [16], we consider multivariate power transformations {Q, = (Q)%; 1 <j<r},
choosing {«,, ..., @,} so as 10 accelerate the convergence of certain moment sequences 1o
those of Gaussian variables. Parameters of the approximating distributions are given up to
terms of order o(v-3), and the approximation is studied numerically in selected cases.

2. PRELIMINARIES

2.1 Notation. Standard spaces include the Euclidean n-space R", the space F,,, of real
(n x p) matrices, the symmetric (p x p) matrices S,, and the cone S, =S, of positive semi-
definite varieties. The half-open unit cube in R" is denoted by D(n) =
(0, 13 x (0, 1] x ... x (0, 1]. Matrix operations include transposition (4 — 4’) and inversion
(B = B-'). Special arrays are [, 0, 4 x B, and Diag(4,, ..., 4,), denoting respectively the
(nx n) identity, a matrix of zeros, the direct product [, 8], and a block-diagonal matrix,
in addition to the unit vector },=[1,.., 1] e R~

2.2 Some Basic Distributions. #(Z) denotes the law of distribution of Z. The joint
moments of X e B> are denoted by 4, iy its central moments by u, . " and its joint

cumulants by « all of order s =5, + = + 5,. We consider the probability density func-

5y 5y
tion (pdf), the cumlilative distribution function (cdf}, and the cumulant generating function
(cgf) of Z. Gaussian laws on Re and F,,, are denoted by N,(u, Z) and N, (M, [), respec-
tively, where u e R* and M e F,,, are arrays of means, and L € S; and [ e S, are arrays of
dispersion parameters. The Wishart distribution on S}, having v degrees of freedom and
the matrices £ and @ of scale and noncentrality parameters in S;, is denoted by

W,(v, £, ©). In particular, if £(}) = N,,(M, L, x ), then L(1'Y) = W,(n, I, M'M).

2.3 Quadratic Forms. We represent quadratic forms in Gaussian variables via parti-
tioned Wishart matrices. Suppose that £(y) = N,(u,Z); consider quadratic forms
U4y, ...y'dy] such that {4,eS;1<j<r} identify the joint distribution of
z=[z',...2'Y on RB» as N,(4,[), where {z=4/2p;1<j<r}, §=[6/,..,6') and
{8,=4)%; 1<j<r}; and write [ e S; in partitioned form as [ = [4)2Z4'7] If
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W=zZ, then Z(I)=W,(I,
(z',...2') shows that ['4y,
(z'z2, .. 2'2] and [trly)), ..., e, ]

Generally [1r¥,,, ..., trW, ] are quadratic forms in jointly Gaussian variables. For if
W = Y'Y with £(Y) = N, (M, I, xZ), then (W) = W,(n Z,0O) with © = M'M. Par-
titioning the typical row of V' as y/ = [y}, ..,y ] such that p, e R” with s+ +p=p,
and thus }' = [Y, Y1 with {}; eF,,,,, 1 <j<r}, we infer that (I}, Zy,,y,j, l<j<r,
so that {tri¥/, = J,, Yy 1 <j < r}) are quadratic forms in jomti) Gaussxan vanables.

,80"). Partitioning W ={[{W,] conformably with

~,y'4y] may be represented equivalently as

More general forms {tri¥ B, 1<j<r}, with {B, e § s l<j<r}, are also quadratic
forms in jointly Gaussian variables because {triW, B, = fj B, y,i 1 <j<r}. The trans-
formation Y — I'B’, with B’ = Diag(B8\, ..., B3, shows. that YB' has the distribution
£(YB) = N, (MBI, xBEB), and thus V=2'Z, with Z=YPB, has F(V) =
W.(n, BEZB', BOB’). Partitioning V=[},] conformably with 1}'=[W}] shows that

{trV,=uW, B;1<j<r} are positive semidefinite quadratic forms in Gaussian variables.

ByY)

so that {3, ..., B,} may be absorbed into parameters of the Wishart distribution. In partic-
ular, the case n =1 yields the forms {3\’ By, ..., /By iny = [y], .., y, ] on R* as before.

Representations in all these cases can be given in terms of standardized varables.
Specifically, the quadratic forms [y'4,p, .., p'4,y] in y e ®?, with Z(y) = Ny(u, £), become
(£Bz, .., 7Bz] with {B,=Z'24 %" 1 <j<r} and z=Z-'p such that £(2) = N,(@. 1)

with =X~ 12y, The further transformation z — P’z = u, where P, is an orthogonal matrix

chosen to diagonalize £'24 L' — P/L124 L17P, = Dxag(é ., 6,,), yields equivalent
forms

Pdy = 2Bz = w i 1<j<n} 2.0
in the Gaussian vector w=[u,..,«'] on R?. Here ¥(u) = N3, Z) with y =

Lyisovyr ) svch that {y, =P'Z- "u;1<j<r}, and in partitioned form = =
[P'P] e S, Other cases may be treated similarly.

24 A Limit Rule, The following lemma is basic, where ®,(z) denotes the
p-dimensional Gaussian cdf with moments to be specified, and Z° denotes the random di-
agonal matrix Z* = Diag (Z}, ..., Z}).

LEMMA 1. Let {Z,; N=1,2,..} be a sequence of random diagonal (p x p) matrices
having nonzero means £(Z,) = My and the diagonal matrix £, containing variances only,
and let Y, =Z;(Zy ~ M) be such that (i) m L(Yy) =0() and (ii) Nuﬂu,;‘;ﬁ 0. 1If
W) = Diag (Z7", ..., Z), then for eve 7 {a;€(0,1]; 1 <j<p) we have mg(lj’h(g))
= O,(w).




Proof. Let 4 = Diag(«,, ..., ,); write Zy = ZyYy + My; and note on dropping subscripts
that Z° = M’(/ + M-'Z))". Expanding each element of (/ + M-'Z})" in its binomial series,
using hypothesis (ii) for N sufficiently large and the assumption that a; € (0, 1], gives

U+MTEN =1+ AMT'EY + oM T'ED). (22)

On combining expressions and reinstating subscripts, we have
2 x=1_ a=1_
(En—My) =4dMy ExIn+ oMy ZnEn)- (2.3)

The lemma now follows from hypothesis (i) on taking limits in (2.3), where it is seen that
Zy asymptotically is linear in the limiting Gaussian matrix }, and where an additional

standardization may be used if needed to secure a proper limit for £ (W{(2)).

3. NORMALIZING TRANSFORMATIONS

We seek normalizing transformations {Q, — (Q)"; 1 <j < r} for standardized quad-
ratic forms in jointly Gaussian varables. From Section 2.3 it suffices to consider
[U)/vB,, ..., U,Jv8,]), where {U, =1trl¥ ;1 <j<r}, such that (W) = W, (v, L, @) and
{E(tr)¥) =v6,: 1 <j < r}. We first evaluate joint cumulants of [U), ..., U,] from their cg/;
we next convert cumulants to moments; and we then expand typical moments of
{V,=(U/v8); 1<j<r}toterms of required order in v. We finally choose {a), ..., a,} s0
as to accelerate the convergence of certain moment sequences to those of jointly Gaussian
variables. We outline these steps in the sections following, deferring further details to Ap-

pendix A.

3.1 The Joint Moments. Starting with the joint cAf of W =[W ] with argument
T €S, (¢f [2]) and expanding its cgf as in [11]. we write the joint cgf of [U), ..., L], with

argument ¢ = 1[4, .., 4], as
Vo= E P27 DT RE + ) 3.1
=

where Q =v-'@ and T, = Diag(4/,,. ..., ¢4,). The joint cumulant «, ,, of order s =
5, 4+ + 5, is the coefficient of ¢ ... £/s,! ... 5,! in the power series (3.1). To simplify no-
tation, partition W' = [W,], L =[ZT,] and Q = [Q, ] conformably; let 8, = trT, + ) and
w,=tZNE, + Q) for 1 <j<r, define

o « v
o(iyigiyly ... igiy) = rZy  Tpp o Ty (B + 58215) (3.2)




cumulants «, ..., of [U), ..., U], of orders 1 < s < 4, are summarized in Table | using the

symmetry of T and Q as in Appendix A.

TABLE 1. Typical cumulants «,, , of [U,, ..., U] of order s, 1 <5< 4.

-5

s 4. tr Coefficient of #61 ... t5fs,! ... 5!

1 { vl,

2 I 2vw,

2 Ly, 2vo,(if?h)

3 I8 8vw;

3 2 8v[oy(if*) + 204(%2)]/3

3 Lt 8v[o4(if*k2) + oy(ik??0) + o4(ji*k3))(3
4 @ 48vw 4

4 £y 24v[ol(&5) + oi(P7F)]

4 re Bv[204(3/41) + 20,(i21370) + o4(ij*F) + a4(ji))]
4 2, 8v[ o (P372k2) + o,(PK32) + o,(iP k)

+ o(i7k2P) + 6,(jitkY ) + ou(ik*Rj20)]

Moments of [U,, ..., U,] are computed from Table | using known relations between
moments and cumulants as in Appendix Table Al; see [6], for example. These computa-
tions give typical joint moments of orders 1 < s < 4 as summarized in Table 2, and other
moments follow similarly.

TABLE 2. Typical joint moments of [U,, U,, U;Jof order 5, 1 < s < 4.

s Symbol Expression

1 Moo vl

2 Ha00 vw,,

2 7 2va,(122])

3 H3oo Bvawyy

3 Mg 8v[o3(12213) + 204(13221)]/3

3 My 8v[04(122321) + 04(13%221) + 0,(212322)]/3

4 Hago 48vw,, + 12viwi,

4 H3pp 24v[o (1522]) + 0,(13221%)] + 12v2w 30,(122])

4 M2 8v[20,(132°]) + 20,(12*1222]) + 0,(12¢1%) + 0,(2142Y]
+ 4viw | w,, + 8viad(122])

4 Hayy {8v[04(132232]) + 0,(133222]) + 0,(1221232])]

+ 0(12031%) + 0,(219322) + o,(13212221)
+ dviw,,0,(2322) + 8v2a,(1221)0,(1321))

3.2 The Transformations. In what follows suppose that @ = o(v) as v — oo, and
conside ‘he standardized variables [U,/v0,, .., U,/v8,] with {v8, = E(U), 1 <j<r} to en-
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sure a proper limit. We establish in Theorem 1 that [(U,/v6))™, .. (U [v6,)*] are
asymptotically Gaussian for every « € D(r).

THEOREM 1. Suppose that £ (W) = W, (v, L, ©) such that ©@ = o(v) as v — co. Then the
varables [U)/v8,, ..., U,/v6,], with {U,=tuW ;1<j<r}, are asymptotically Gaussian as
v — oo, as are [(U,/v8,)", ... (U,[v8,)"] for every a e D(r).

Proof. The variables W = }"Y when standardized, and thus [U,/v0,, ..., U,[v8,] as mar-
ginals, are asymptotically Gaussian by central limit theory {11], verifying condition (i) of
Lemma 1 for Z, = Diag (U,/v6,, ..., U,jv8,). To venfy condition (i), identify A, and E,

as in Lemma | with N = v and observe from Table | that

lim A, 'S, =Jim (2/v)'*Diag (1, .. ,7) =0 (3.3)

veroo ~ Vv TV

where {y, =w}?0;"; 1 <j<r} and v = o(]) because @ = o(v). Lemma | now asserts that
the transformations T(q):{U,/v0, = (U,{v6))"; 1 <j < r} yield asymptotically Gaussian van-
ables for every {«, € (0,1]; 1< < r}, which completes our proof.

It remains 1o examine certain moment sequences of [(U,/v8,)", ... ,(U,{v6,)*"], which
we now investigate. Letting {U, =vf,+e; 1<j<r} and {V,=(U/v0)%; 1 <j<r}, we

evaluate the mixed moments
EWVY . VY =E[(1+e8)™ . (1+¢/v0,)" "] (3.4)

on expanding each factor and finding expected values term-wise. For moments to third
order, it suffices to consider the case r=3 and to use {«, §,y} in lieu of {«, « ,, a;}. The

resulting expression is basic, namely,

EVivivy=% S 5 (- )***gTi05/67 o bicLEqel ehed) (3.5)

where {a/, b/, ¢{} are binomial coetticients identified in Appendix A.

TABLE 3. Marginal moments of V, = (tri¥},/v8,)* to terms of order o(v-3).

Moment Expression*

Moo () (am¢z) + 2[;]2 [( %‘ )¢3 + ( > ; 3 )¢§]
2 2 2a¥(a — |

() assy + 20D (49, + (a - 99)

v,

Hpo(a) + 3(a — 1)¢3]

‘agp=ala— 1) (a~10); ¢, = trZs (g, + sQu) /(€ + Q)




To continue, identit;y moments about zero as ul,(« f,y) = E[V]VV3); Lt
u,{a, B,7) be the corresponding central moment; and let p, o(a, B), wo, (B, v) and pex) be
typical marginal moments. We next compute {u,, («fB,7); r+s+t=1} and
{2, B.7); 2<r+ s+ <3} to terms of order o(v~3), applying expression (3.5) as often
as needed to known relations between central and noncentral moments and using entries
from Table 2. Moments of each one-dimensional marginal distribution are taken from {16]
on replacing their 6, by our v8, for example. With «3=a(a—1)..(¢ —~1) and
{¢, = w,/Jv8;; 5=2,3,..}, these moments are given in Table 3 to terms of order o(v=3) for
(U,/v8,)", with corresponding expressions for (U,/v8,)" and (U,/v6,)'.

TABLE 4. Nonvanishing terms to order i+ j < 4 and their coefficients in the expression
(A.6) for the joint moment u,4(a, f) of [}, V,, V4].

P () (616 alb! [ Eeies) — Efe))E(ep)]
11 v (6,0, af 2vo,(1221)

2 1 y-3 (036,)! ala — 1)B/2 Bv[o4(12213) + 26,(13221)]/3
1 2 v-3 6,63 af(f —1)/2 8v[o4(21223) + 20,(2°122)]/3
22 v (e a(a — 1)B(B — 1)/4 8v[ Ko + vo3(12:1)]
31 v (436,)! afa — 1)@ — 2)B/6 12v[2K;,0 + v y0,(1221)]
13 v (6,69 af(B - 1)B —2)/6 12v[2K 35 + vyy0,(1221)]

TABLE 5. Nonvanishing terms to order i +j < 4 and their coefficients in the expression
(A.7) for the joint moment u,,(a, §) of [V}, ¥, V5]

h i j (—i—)""*l (0+i04)! Coefficient [E(ehE(ejes) — E(el)E(e})E(ed)]
01 1 v (6,6,)"! 0 2vay(1221)

021 v-3 (636,)" a2 8vLo,(12213) + 20,(13221)]/3
01 2 v (8,69 0 8v[05(2122%) + 204(2°122)]/3
0 22 vé (6362 a2B(f ~ 1)/2 8v[ Kypo + vod(1221)]
031 v CHAR Bax(a —1) 12v[ 2K,y + vary0,(122D)]
013 vd 8,63 0 12v[ 2K, 3 + varppo,(1221) ]
213 y-o 00,)"  —aa—1)p dviw,0,(1221)

We summarize in Tables 4. 5 and 6 the computations needed for u,(«, ),
daofa, B), and u,,(a, B,y) up to terms of order o(v-?), where expressions for {K,,} are
identified in Table 7. Details are given in Appendix A. The required partial sums for
{#t,.((a, B, y)} are found from each table on ignoring the first two columns, next multiplying
the remaining expressions in each row, then summing these products over rows, and finally
collecting terms in powers of v-'.




TABLE 6. Nonvanishing terms to order i+ j+ k <4 and their coefficients in the ex-
pression (A.8) for the joint moment p,,(a, 8, y) of [V,. V,, ¥3]
1

k() @009 bl Cli.j. "

111 v-3 (6,6,84) afly 8v[o3(122321) + oy (132221) + 03(212322)]/3
211 v 0160,8;) a(a — 1)By/)2 8vL K, + vo,(1221)a,(1321) ] #*

121 v (0,630,) aB(B - 1)y/2 8vL Ky + vox(2172)0,(23:2)]

112 v (0,6,09)" «fy(y — 1)/2 8V[an + vay(3123)0,(3223) ]

*C(i, j, k) is defined in expression (4.9).
**This expression derives from {8vK,, + 4v?w,;0,(2322) + 8vig,(1221)0,(13?1) — 0 —~
(2vw,))[2v6,(2322)1 — 0 + 0}, for example.

TABLE 7. Identification of typical constants {K,}.

i j k Ki,vk

310 a,(15221) + 0,(1°2°1%)

220 204(13221) + 20,(12212221) + 6,(12°13) + 0,(2142%)
21 1 [oo(1322321) + a,(1332221) + 0,(12212321)

+ 0 (1213213) + 0,(214322) + 0,(13212221)]

3.3 The Approximating Distribution. It remains to choose {a, #,y}. As all mixed
central moments of [V}, V,, ;] of order 3 vanish up to terms of order o(v-?) (compare
Tables S and 6), we specifically choose {«, f, ¥} so as to annihilate the leading term in ex-
pressions for each of (), Hew(B), and pes(y). The solution from Table 3 is
a=1—20,w/3w},, with similar expressions for § and y. For determining {«,, ..., a,} in
the general case, identical arguments vield

=1~ Wwp/dul; 1<j<r. (3.6)

The foregoing developments support a Gaussian approximation to the joint distrib-
ution of [V}, ..., ¥,]. Up to terms of order o(v-?), the means # ={[u), .., ) and dispersion
parameters = = {{, ] of the approximating distribution are given in the following theorem;
expressions to order o(v—?) are available from Table 3 and Table 4.

THEOREM 2. To terms of order o(v-?), parameters of the Gaussian approximation to the
joint distribution of [V}, ..., V], with {V, = (it [v6)”; 1<j<r}, are p = [u, .., 4,)
and £ = [{ ], where

w=1+owpafy— Y I<sjsr (3.7

Ey=2a,a; 0 DO L <i, j<r (3.8)




forevery {,€(0,1]; I <j<r).

In summary, the joint distribution of [I’}, ..., V] is approximatcly Gaussian as indi-
cated. Equivalently, the variables

Z; =P L(Uv0)" ~ 1 = wpafa; — 1)v67)) 2wy, ) 1<j<r (3.9)

may be taken to be approximately Gaussian having zero means, unit vanances, and the
correlation matrix R = [p, ], where

112 1/‘

py= ol t')/w l<gi<jsr (3.10)

from p, = ¢, /¢12E)? and (5.8). To terms of order o(v-?), these correlations do not depend
on the particular choice for {ay, ..., «,}.

3.4 Some Special Cases. Special distributions merit further attention. As in Section
23, patition W=[W,] I=[Z] and O=MM=[0,] conformably; let

{4, =u0,, 1 <j<r}; and suppose that (T, =_l 1 <j<r}). Then the marginal distrib-
ution of U, =trl¥, is noncentral chi-squared havmg vp; degrees of freedom and the
noncentrality parameter 4; the corresponding central distribution of [tri¥),, ..., trW, ] has

been studied in {10]. We determine from (3.6) that
{ay=1=2(p;+ 2)(p; + 30)13(py + 20)% 1 <j<r). (3.11)

For central distributions having {4, = 0; 1 <<}, this reduces to {«, = 1/3; ] <j < r}. The
resulting transformation, [U, ..., U,] = [(U,/vp)'?, ... (U,[vp,)'"*], is a multivariate exten-
sion of the Wilson-Hilferty [32] transformation as applied to each variable. Up to terms
of order o(v-3), expressions for the means [u,,..,u,] and the dispersion parameters

Z =[{,] of the approximating Gaussian distribution are given by

w=1-=2%p, 1<j<r (3.12)

$i=2%p; 1<j<r 3.13)

2 ..2 8 ..2\
&= oy (") + GJEU l] [ oolif 1)_(1/2 <_+_1-)] i#]. (3.14)

R 7

The corresponding correlation matrix R = [p,] has elements

oai*)  doy(ifD

) ] .
pi = + [a (ij%0)) — (l/2)< —)]; i#]. (3.15)
i Pz”zl’/”z 9vp1/2 1/2 2 p;




Some numerical studies are reported in the following section based on the foregoing results.
4. NUMERICAL STUDIES

Our Gaussian approximations apply to various joint distributions as described in
Section 2.3. Here we consider implementing these approximations, including a study of

their accuracy in selected cases.

4.1 A Monotone Property. Although Gaussian distributions are perhaps best known
among continuous multivariate distributions, even here available tables are limited in scope
by the number of parameters required. The following facts are useful.

Our approximation can be implemented using available tables and a result of Slepian
[31] which auserts that if Pg(+) and P () are Gaussian measures having zero means, unit
variances, and correlation matrices R=[p,] and [ =[y ], respectively, such that

{ry<p,; 1<i<j<r}, then

PriXi <y XKoo} 2 Pr{X < ¢y, X, S ¢} 4.1

for any scalars {c, ..., ¢,}. In the special case that [{Z,, ..., Z,] are equicorrelated standard
Gaussian variables having the correlation parameter p, the cdf '

Fyle,...0=PZy<¢,...Z, <) (4.2)

has been tabulated in [7] for various values of r,p and c. If we now take
p*=min{p,; 1 <i<j<r}, Slepian’s inequality assures that the Gaussian approximation
for [}, ..., V,] can be bounded below by F,.(c,..,¢). In the central case for which
Q =0, we find that 6,(j/%) = rZ X, > 0 and thus p* = 0 can serve as a lower bound.

4.2 Accuracy of the Approximation. We compare approximate with exact probabili-
ties using available tables or algorithms for the latter in selected cases. Two cases are of
interset, namely, (i) the bivariate central chi-squared distributions of {20] using an algorithm
developed in [15], and (ii) multivariate central chi-squared distributions studied in {22] and
tabulated in [21]. In both studies the approximating Gaussian probabilities are taken di-
rectly from {7]. To avoid interpolating in these tables, we choose values of r, c and p given
there, then refer to (3.9) to express the inequalities {Z, < ¢; 1 <j<r} equivalently as
{(Ugc*; 1<j<r} to find upper limits for [U,,.., U,]. Similarly we solve expression
(3.15) with p,, = p in terms of p to find the parameters appropriate for the joint distribution
of [U,, ..., U]. Exact probabilities were computed in the first case using sufficient terms
of a series given in [15), and in the second case by interpolating in the tables of [21]. Details
follow.




Let v=1,r=2,p=2n, L,,=%5=1, and Z,=1/. Then the joint pdf of
{(Uy=tuW, U,=1ly} is given in {20] as a series bilinear in the Laguerre polynomials.
An algorithm provided in {15] was programmed and used to compute the probabilities
listed in Appendix Table B1 for the cases {n=1, 2, 3, 5, 15, 30 and 50}. These are exact to
the number of decimals reported. Four conclusions are suggested, other factors remaining
constant. (i) For any n and  the error of approximation tends to decrease as the included
probability increases, i.e., as ¢ and c* increase. In connection with stauistical tests having
upper-tail rejection regions, this indicates that the approximation is best where it is needed
most. (ii) The error of approximation tends to decrease as n increases. This is indeed the
rationale for our approximation, which is here seen to be asymptotic in n even when
v =1 in our earlier developments. (iii) The error of approximation tends to increase as 1
and thus p increase. (iv) The Gaussian approximations appear tenable over most of the
parameter values studied. especially in view of the fact that accuracy beyond the second
decimal is seldom required in practice.

For the case r = p and @ = (, the distribution of [U}, ..., U,] reduces to that of the
diagonal elements of a central Wishart matrix of order r having v degrees of freedom as in
[22]. For the special case that v=1 and IZ=[0,] is a correlation matrix with
equicorrelation parameter 6, extensive tables of this distribution are given in [21}. For
{r=13,4,6,10}) and various values for the parameters p and ¢ of the approximating
Gaussian distributions, actual probabilities and their Gaussian approximations are given in
Table B2 of Appendix B. Exact probabilities were obtained from |21} using a standard
two-dimensional interpolation procedure (c¢f. [1], p. 882) to interpolate with respect to c*
and 4. Several conclusions are suggested by the data in Table B2 and are supported by
other computations not reported here. Specifically, the error of approximation tends (1) to
increase as either r or p increases, and (ii) to diminish towards upper tails of the distrib-
ution. When p=r and v =1, we accordingly recommend that use of the approximation
be restricted to upper tails only. Despite the fact that our developments rest heavily on
expressions asymptotic in v, our approximations fare surprisingly well in upper tails of the
distributions studied even when v = 1.

APPENDIX A

To supplement developments of Section 3, we consider first the joint cumulants and
then moments of [U,, ..., U,].

A.1 The Joint Cumulants. Suppose that L(W) = W,(n,Z, ®). The joint cAf of I}’
with symmetric argument 7T, as given in [2], yields the senies expansion for its cgf as given
in [11] in the "orm




bw@D=vYy 27Tl T TTE + Q) (4.1)
s=1

where = v-'@. Standard arguments yield the joint marginal cgf of [U,, ..., U,] on setting
other arguments to zero in (4.1), giving (3.1). Letting G(s) = (T,2)'T,Z + 5Q), we extract
the joint cumulant X, .., as the coefficient of #! ... 7[5! ... 5,! in the series

Vo =vS #27UG(). (4.2)
s=1
Proceeding recursively, with 7, and £ = [T,] in partitioned form, we obtain

_ r r

15 Y [ S SR VR NI 9 (4.3
2= e =

where s’ = 5~ | and the expression inside brackets is the typical (x,v) block of (7).

Similarly the typical block of G(s), with u and v ranging from 1 to 7, s

r

r
guv(-’) = PIR ; gl 'uzuiz ti,.zifixti, @i,v + Sgi,v) (4.4)

=1
which, on summing u=v from 1 to , yields

iG(s) = [ (To2) ™' ToE + 52)]
r r
=% X eyl Ey e B Gy, +sQ)]

=l =

(4.9

Combining (A.5) and (A.2) yields the desired cumulants in terms of the parameters
0,=u@,+Q)l<j<r}, {wl<jgr,s=1,2,..}, and {o,(iii; ... ii});s=1,2,..} as
defined in Section 3.1. These are summarized in Table 1 to include cumulants of order s.
with 1 <€ 5 < 4. Standard relations between moments and cumulants, as listed in Table Al,

give values reported in Table 2.

TABLE Al. Relationships between typical central and noncentral moments and cumulants
oforder s=5+5+45, 1 <s5<4.

s Relationship

1 Ko = Kygq

s<3 Fryrgey = Kopopsy

4 Hapo = Kag + 300

4 Hato = K30 + 300K 110

4 Bazo = Kap + KagoKpzg + 2539
4

Han = Ky + KangKoyy + 2K440K g




A.2 Expansions for Moments of [V, ..., },]. Beginning with (3.4), we expand terms
appearing there in their binomial series to obtain expression (3.5), where {a;, b/, ¢/} are
binomial coefficients given by

al = ra(ra ~ 1)... (ra — i + 1)/
bj = sB(sp — 1) .. (5 —j + DIt
e =ty(ty = 1) ... (ty — k + 1)/K!
For mixed moments of order two, repeated use of (3.5) in the expression

K10 = Hyj0 — Ml How ZIVES

mo B = & & () er'or'alsjac.p (4.6)

where A(i, ) = [E(ejef) — E(e{)E(e4)]. Similarly, from the identity py = ni0 - 2110 #l00
+ 2uls ) Bowe - Hio Mo and (3.5), we determine that

kaole =5 5 (+)* o7'07(a? - 2415 B0, )
N oo_ 4.7)
—2 5 5§ ()"l alals) Bk, i)
h=1 i=0 j=0

where B(h, i, j) = E(ef)[ E(ejef) — E(e{)E(e7)]. Finally, the identity uy, = nuiy - mia 4ow -
Ko Moo = Biio Moo T 2l Moo Moo after lengthy reduction yields

o0 00 00 i o
il B =% ¥ ¥ (L )+ er'o7054a] b} chClivf 0 (4.8)

-~

where

Cli, j, k) = [E(elede¥) — E(e\e3)E(e]) — E(e})E(efe)

i ; . A.9)
_ E(elef)E(ek) + 2E(e)) E(ed) Elely). (

Expansions (A.6), (A.7) and (A.8) may be truncated to approximate those moments
to terms of specified order in v. It is required to compute a sufficient number of terms using
expressions for E(ejejef) from Table 3 as central moments for [V, U,, U,]. Observe that
{E(e)) =0; 1 <j<3}; thus expressions for uyg(a,B), mae(a, f) and pyy(x, B,y) simplify
somewhat. Specifically, A(i,) = 0= B(0,i,)) if either i=0 or j=0; B(l,i,j)=0 for all i
and j; and C(i,j, k) =0 if either i=0, j=0 or k=0. Using these facts and properties of
the binomial coefficients, we summarize in Tables 4, 5 and 6 the computations needed for
myo(a, B), ao(a, B), and uyyy(x, B, ¥) up to terms of order o(v-3), where the quantities {K,;}
are identified in Table 7.
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APPENDIX B

TABLE B1. Exact probabilities for bivariate x? distributions having n degrees of freedom.
together with the Gaussian approximation* (A) having parameters ¢ and p.

n

p c 1 2 3 5 15 30 50 At

0.1 -2.0 .0000 .0001 .0004 .0005 .0007 .0008 .0008 .0009
0.1 -1.0 0197 .0277 .0290 .0296 .0303 .0305 .0307 0313
0.1 0.0 2736 2704 2688 2674 2663 2661 .2660 .2659
0.1 1.0 7154 7145 7144 7144 7145 7145 7145 7140
0.1 2.0 9542 9552 9555 9556 9556 9555 9555 .9554
0.1 3.0 9977 9976 .9976 9975 .9974 9974 9973 9973
0.2 -2.0 .0000 .0002 .0004 .0007 .0010 .0011 .0012 0014
0.2 -1.0 0215 .0311  .0331 .0344 .0360 .0366 .0369 0381
0.2 0.0 2897 2869 2853 2838 .2825 .2822 2821 .2820
0.2 1.0 7276 7247 7238 7231 7223 7220 7218 7208
0.2 2.0 9558 9564 9565 9565 9563 9562 .9561 .9559
0.2 3.0 9977 9977 9976 .9976 9974 9974 9974 .9973
0.4 -20 .0000 .0002 .0007 .0012 .0020 .0023 .0024 .0029
0.4 -1.0 0257 .0401 .0440 .0470 .0501 .0511 .0517 0536
0.4 0.0 3236 3221 3202 3183 3163 3159 3157 3155
0.4 1.0 7489 444 7426 7411 7392 7384 .7380 7362
0.4 2.0 9590 9590 9589 9587 9583 .9580 .9579 .9574
0.4 3.0 9978 9978 9977 9976 9975 .9974 9974 .9973
0.6 -2.0 .0000 .0003 .0011 .0023 .0040 .0045 .0048 .0055
0.6 -1.0 0321 .0543 .0606 .0649 0687 .0699 .0705 0725
0.6 0.0 3623 3609 3585 3561 3535 3529 3527 3524
0.6 1.0 7690 7645 7626 7608 7585 7576 .7571 7552
0.6 2.0 9624 9623 9620 9617 9611 .9608 .9606 .9600
0.6 30 9980 .9979 9978 .9978 9976 .9975 .9975 9974
0.7 -2.0 .0000 .0004 .0016 .0034 .0056 .0063 .0066 .0074
0.7 -1.0 0372 .0650 .0723 .0768 .0804 0815 .0820 .0840
0.7 0.0 3844 3824 3798 3772 3746 3740 3737 3734
0.7 1.0 7794 7755 7737 7721 7699 7690 (7685 7667
0.7 2.0 9643 9642 9640 .9637 9630 .9627 .9625 9619
0.7 3.0 9981 9980 9979 .9979 9977 9976 .9976 .9975

*Approximate values are Fp(c,¢) = P,(Z, < ¢, Z,< ¢) from [7].
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TABLE B2. Exact (E) and approximate* (A) probabilities for an r-dimensional »? distrib-
ution having v = | degrees of frcedom.

(.0 1.0 2.0 3.0

N I A |8 A I- A I A
r=3

0.1 1525 1489 6194 6106 9343 .9343 9966 .9960

0.2 JA741 0 1731 .6451  .6263 9383 9357 .9967 .9960

04 2220 2232 6876  .6597 9455 9393 9970 .9961

0.6 2810 2786 7249 6972 9525 9459 9973 9963
r=4

0.1 0868 .0871 .5413 .5259 9158 9140 9955 .9946

0.2 Jd077 0 1130 .5794  .5506 9226 9166 .9957 .9947

0.4 U581 1692 6406 .6007 9341 9233 9962 9948

0.6 2267 2334 6922 6539 9447 9338 9967 .9953
r==6

0.1 0293 .0331 4215 .3972 .8824 8756 9933 .9920

0.2 0434 0551 4791 4373 .8953 8814 .9938 .9921

0.4 0851 1100 .5705 .5144 9155 8958 .9947 .9925

0.6 1569 (1800 .6450 .5919 9325 9139 9958 9934
r=10

0.1 .0037 .0066 .2683 .2404 8258 8065 9893 .9867

0.2 .0079 .0184 .3469 .2983 8515 .8§202 9903 .9870

0.4 0277 0605 4780 4072 8876 .8507 .9924 .9881

0.6 0822 .1281 .5853 5146 9154 8838 .9943 9902

*Approximate values are F(c,..,¢) = P(Z,<¢c,..,Z < c) from |7].
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